Selasa, 28 Juni 2011

Katabolisme karbohidrat


BAB I
PENDAHULUAN
A.    Latar belakang
Metabolisme adalah istilah yang mencakup semua proses kimia yang terjadi di dalam sel atau tubuh makhluk hidup. Makhluk hidup mendapatkan energi yang berguna secara biologis dari makanan merupakan fungsi utama semua jenis hewan. Fungsi tersebut dicapai dengan aktivitas sejumlah besar katalis biologis yang disebut enzim, yang mengerjakan urutan reaksi kimia dimana dihasilkan adeno triposphat, ATP dan senyawa-senyawa kaya energi lainnya. 
Metabolisme dalam tubuh makhuk hidup dibedakan menjadi 2, yaitu :
-      Anabolisme  adalah reaksi penyusunan molekul sederhana menjadi molekul yang lebih komplek dengan memerlukan energi. Anabolisme merupakan reaksi penyimpanan energi dalam bentuk energi kimia sebagai energi cadangan bagi tubuh.
Contoh reaksi anabolisme meliputi : fotosintesis, kemosintesis, sintesis protein, glukoneogenesis, glikogenesis dll.
-      Katabolisme adalah reaksi yang sifatnya memecah ikatan kimia yang komplek menjadi ikatan yang lebih sederhana dengan melepaskan energi. Katabolisme merupakan reaksi yang membebaskan energi ATP dan panas. Reaksi ini berlangsung enzimatis.
Contoh reaksi katabolisme meliputi : respirasi aerob, respirsi anaerob (fermentasi), glikolisis, lipolisis, proteolisis, glikogenolisis .
Reaksi anabolisme dan katabolisme sangat berkaitan dengan energi. Pada reaksi anabolisme terjadi penyimpanan energi, sedangkan pada reaksi katabolisme terjadi pembebasan energi. Pada peristiwa ini dikenal istilah khusus, yaitu eksergonik dan endergonik. Reaksi eksergonik adalah reaksi yang menghasilkan atau membebaskan energi. Reaksi endergonik adalah reaksi yang memerlukan energi dalam bentuk panas. Reaksi semacam ini disebut teaksi endoterm. Energi untuk  gerak berupa molekul berenergi tinggi, yang disebut molekul ATP. Molekul tersebut berasal dari penggabungan glukosa melalui reaksi kimia yang panjag dan kompleks. Glukosa sendiri dikenal sebagai sumber energi yang mengandung energi ikatan kimia dan berasal dari proses transformasi energi matahari.
Transformasi energi dibedakan menjadi tiga macam, yaitu  :
Pertama, energi matahari yang ditangkap oleh klorofil pada tumbuhan hijau diubah menjadi energi kimiawi melalui proses fotosintesis. Energi kimiawi digunakan untuk sintesis karbohidrat dan molekul kompleks lainnya dari CO2 dan H2O. Energi radiasi matahari yang berbentuk energi kinetik diubah menjadi bentuk energi potensial. Energi kimiawi disimpan dalam molekul karbohidrat dan bahan makanan lainnya sebagai energi ikatan yang menghubungkan atom-atom bakunya.
Kedua, energi kimiawi dari karbohidrat dan molekul-molekul lain diubah menjadi energi dari ikatan fosfat yang kaya energi melalui respirasi sel. Transformasi energi berlangsung dalam mitokondria.
Ketiga, energi terlepas bila energi kimiawi dari ikatan fosfat digunakan oleh sel untuk melakukan kegiatan, seperti kerja mekanik kontraksi otot, kerja listrik meneruskan impuls saraf, dan kerja kimiawi serta mensintesis molekul-molekul untuk pertumbuhan. Jika transformasi ini berlangsung, akhirnya energi mengalir ke sekelilingnya dan hilang sebagai panas.
Reaksi kimiawi dalam sel-sel tubuh tidak terhitung banyaknya. Dapat dikatakan bahwa apa pun wujud kegiatan biologik yang kita saksikan, baik yang dikenal sebagai pertumbuhan, perkembangan, perkembangbiakan, sekresi, ekskresi, dan sebagainya, sernuanya dengan proses kimia yang ribuan banyaknya. Istilah metabolisme berkaitan dengan totalitas proses kimia dalam tubuh organisme. Peta metabolisme adalah suatu bentuk ilustrasi organisasi metabolisme, yang menyangkut unsur-unsur proses metabolisme, kedudukannya satu dengan yang lain, juga unsur-unsur yang berproses serta perannya, dan faktor luar yang berpengaruh. Metabolisme mempunyai 4 fungsi dasar,  antara lain  :
-      menghasilkan energi kimia dari pemecahan zat makanan yang kaya energi
-      mengubah molekul zat makanan menjadi prekusor unit pembangunan bagi makromolekul sel
-      menggabungkan unit pembangunan tersebut menjadi protein, asam nukleat, lipid, polisakarida dan komponen sel   membentuk dan memecah biomolekul yang diperlukan oleh sel 

























BAB II
Katabolisme karbohidrat
A.      Pengertian
                             Serangkaian reaksi biokimia dalam sel organisme hidup disebut dengan metabolisme. Pada metabolisme juga terjadi pertukaran zat dan energi yang terjadi dalam sel Metabolisme dibedakan menjadi dua, yaitu katabolisme dan anabolisme. Katabolisme adalah proses pemecahan molekul kompleks menjadi molekul sederhana dengan melepaskan energi. Contoh: respirasi.
a)      Respirasi
Respirasi di sebut juga pernapasan atau pembakaran. Respirasi merupakan peristiwa oksidasi biologis yang mengguankan oksigen sebagai akseptor electron terakhirnya. Dalam proses ini, oksigen di reduksi menjadi air. Electron dan hydrogen yang bebas mula-mula di tangkap oleh NAD menjadi NADH2, tetapi selanjutnya atom hydrogen dan electron di berikan ke oksigen melalui system transport electron sehingga di hasilkan kembali       NAD dan H2O.
Tahap- tahap respirasi aerob yang di lalui oleh molekul glukosa di dalam sel. Tahap- tahap penguraian glukosa secara sempurna adalah sebagai berikur:
v  Glukolisis atau pemecahan glukosa menjadi asam piruvat
v  Pembentukan asetil koenzim A dari asam piruvat
v  Siklus krebs atau siklus asam sitrat. Siklus ini menghasilkan atom hydrogen berenergi tinggi dan membebaskan karbon dioksida
v  Transport electron, atom hydrogen di pisahkan menjadi proton dan electron yang akan di pindahkan melalui molekul pembawa electron ( rantai respirasi) menuju molekul oksigen dan tereduksi menjadi H2O. selama proses transport electron ini, banyak energy di bebaskan dan di simpan dalam bentuk ATP.

















Respirasi sel berlangsung di dalam mitokondria. Sebagai hasil oksidasi mitokondria terbentuk ATP. Suatu proses katabolisme yang memecah substrat seperti karbohidrat di dalam sel disebut respirasi sel. Reaksi katabolisme karbohidrat adalah sebagai berikut.

C6H12O6+6O2 --> 6CO2+6H2O+E (Energi)

Energi yang dibebaskan dari reaksi katabolisme di atas akan disimpan dalam bentuk molekul fosfat berenergi tinggi yang disebut ATP (adenosin triphosphat). Energi kimia yang dibebaskan, kemudian dimanfaatkan sel tubuh untuk melangsungkan berbagai jhenis kerja biologi di dalam sel. Oleh karena itu, reaksi katabolisme disebut juga reaksi disimilasi.
 Respirasi sel melibatkan berbagai enzim dan terdiri atas tahapan-tahapan, yaitu reaksi glikolisis, reaksi dekarboksilasi oksidatik, siklus Krebs, dan transpor elektron.
a.    Glikolisis, yaitu penguraian molekul glukosa menjadi 2 asam piruvat, 2 NADH, dan 2 ATP. Glikolisis terjadi di sitoplasma. Glikolisis merupakan proses pengubahan molekul sumber energi, yaitu glukosa yang mempunyai 6 atom C manjadi senyawa yang lebih sederhana, yaitu asam piruvat yang mempunyai 3 atom C.Reaksi glikolisis mempunyai sembilan tahapan reaksi yang dikatalisis oleh enzim tertentu, tetapi disini tidak akan dibahas enzim-enzim yang berperan dalam proses glikolisis ini. Dari sembilan tahapan reaksi tersebut dapat dikelompokkan menjadi dua fase, yaitu fase investasi energi, yaitu dari tahap 1 sampai tahap 4, dan fase pembelanjaan energi, yaitu dari tahap 5 sampai tahap 9.
  • Pertama-tama, glukosa mendapat tambahan satu gugus fosfat dari satu molekul ATP, yang kemudian berubah menjadi ADP, membentuk glukosa 6-fosfat.
  • Setelah itu, glukosa 6-fosfat diubah oleh enzim menjadi isomernya, yaitu fruktosa 6-fosfat. Satu molekul ATP yang lain memberikan satu gugus fosfatnya kepada fruktosa 6-fosfat, yang membuat ATP tersebut menjadi ADP dan fruktosa 6-fosfat menjadi fruktosa 1,6-difosfat. Kemudian, fruktosa 1,6-difosfat dipecah menjadi dua senyawa yang saling isomer satu sama lain, yaitu dihidroksi aseton fosfat dan PGAL (fosfogliseraldehid atau gliseraldehid 3-fosfat).
  • Tahapan-tahapan reaksi diatas itulah yang disebut dengan fase investasi energi.
  • Selanjutnya, dihidroksi aseton fosfat dan PGAL masing-masing mengalami oksidasi dan mereduksi NAD+, sehingga terbentuk NADH, dan mengalami penambahan molekul fosfat anorganik (Pi) sehingga terbentuk 1,3-difosfogliserat.
  • Kemudian masing-masing 1,3-difosfogliserat melepaskan satu gugus fosfatnya dan berubah menjadi 3-fosfogliserat, dimana gugus fosfat yang dilepas oleh masing-masing 1,3-difosfogliserat dipindahkan ke dua molekul ADP dan membentuk dua molekul ATP.
  • Setelah itu, 3-fosfogliserat mengalami isomerisasi menjadi 2-fosfogliserat. Setelah menjadi 2-fosfogliserat, sebuah molekul air dari masing-masing 2-fosfogliserat dipisahkan, menghasilkan fosfoenolpiruvat.
  • Terakhir, masing-masing fosfoenolpiruvat melepaskan gugus fosfat terakhirnya, yang kemudian diterima oleh dua molekul ADP untuk membentuk ATP, dan berubah menjadi asam piruvat. (lihat bagan)






https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhY0IkY_5qMwyBnFcgAtQvMfbxkQXWBh_0f9tPNi2IHqLsLqTvWrbCDP82qc-fQ99wFn1pWETe5vvptatIoSpl3KClHeq0KH-JLxdIBOH7O7qOVddzaJV3Q0nrcG9h_Y7qDK53fMwJnfT4B/s640/Fermentation123.gif















  • Setiap pemecahan 1 molekul glukosa pada reaksi glikolisis akan menghasilkan produk kotor berupa 2 molekul asam piruvat, 2 molekul NADH, 4 molekul ATP, dan 2 molekul air.
  • Akan tetapi, pada awal reaksi ini telah digunakan 2 molekul ATP, sehingga hasil bersih reaksi ini adalah 2 molekul asam piruvat (C3H4O3), 2 molekul NADH, 2 molekul ATP, dan 2 molekul air.
  • Perlu dicatat, pencantuman air sebagai hasil glikolisis bersifat opsional, karena ada sumber lain yang tidak mencantumkan air sebagai hasil glikolisis.
Daei Glikolisis inilah kemudian proses dilanjutkan ke DO dan Siklus Krebs kemudian ke Sistem Transport Elektron



https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh7QNEwBHiVfwI4Bsdfux8nPxkoBjk3p-3jYv2YJytqOaOUETQC-E5SOtoX_OPk73FDmybjdelOhbmmT5FJa2diXVKd_VzaYqHWR9ejI4HLcr84bXl1WNbs-uB-SyAF5Q4D5QXBaT68Ek3o/s400/siklus+krebs.jpg










https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi8aiCHdYJyaUi0TVcpHcEwtrxoS3uLwcw_Di6pnfB_FlOaFW9ZTN6Mnqgrs0mi1BDmFhyphenhyphen4Go_BrGDthwFjZUHTQq2eEde5V7nmFSgR_OWArGtcaJlzWSorwQHW9WmQHRMeAjkUoaPcwNlE/s320/Glikogenesis.JPG






b. Reaksi dikarboksilasi oksidatif
Setelah melalui tahap glikolisis, piruvat memasuki mitokondria jika ada oksigen molekuler. Di dalam mitokondria, piruvat mula-mula diubah menjadi suatu senyawa yang disebut asetil KoA. Reaksi ini disebut reaksi dikarboksilasi oksidatif.
Selanjutnya asetil KoA siap memberikan asetatnya ke dalam siklus krebs untuk oksidasi lebih lanjut dalam rangkaian proses yang disebut siklus krebs atau siklus trikarboksilat.

c. Siklus krebs, merupakan proses pengubahan asetil KoA menjadi CO2 yang disertai dengan pembebasan energi. Asetil koA yang terdapat di dalam mitokondria bereaksi dengan asam oksaloasetat menghasilakan asam sitrat. Langkah berikutnya asam sitrat diuraikan sehingga terbentuk oksaloasetat kembali. Hasil akhir siklus krebs adalah 6 NADH, 2 FADH, dan 2 ATP. Selanjutnya NADH dan FADH masuk ke sistem transpor elektron. Siklus krebs terjadi di mitokondria.


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgVMzDKhA1bbA_dmTGnY7f5PN5zCq_qosiMQzMTbPWbWHuv38P-IoBZbx2A0KaOraS2Hp8xg_KZQSpO-rW6jUZfX8N89IuSWPoHEjrSB56gKstJr9cyoDwtMsP6u3DjRtuOQ0z4P0RuDrrd/s320/SIKLUS+ASAM+SITRAT.JPG
























d. Transpor elektron, berlangsung di membran dalam mitokondria. Molekul hidrogen yang dihasilkan pada siklus krebs yang terdapat dalam NADH dan FADH2 diubah menjadi elektron dan proton. Pada sistem ini, oksigen adalah aseptor hidrogen yang terakhir, kemudian hidrogen bereaksi dengan oksigen membentuk air. Dalam proses ini dihasilkan 34 ATP.

Respirasi Anaerob (Fermentasi)
Proses glikolisis menghasilkan asam piruvat. Asam piruvat tersebut akan masuk ke dalam siklus Krebs jika ada oksigen. Namun, jika kondisi lingkungannya kurang oksigen, asam piruvat yang terbentuk harus melintasi jalur lain, yaitu respirasi anaerob. Pada proses ini asam piruvat bertindak sebagai akseptor hydrogen dan memerlukan enzim (fermen) sehingga respirasi anaerob disebut juga fermentasi. Pada respirasi anaerob, asam piruvat direduksi menjadi asam laktat. Respirasi anaerob menghasilkan energi lebih sedikit dibandingkan reaksi aerob. Setiap molekul glukosa hanya menghasilkan 2 ATP yang dihasilkan pada tahap glikolisis.
Gula adalah bahan yang umum dalam fermentasi. Beberapa contoh hasil fermentasi adalah etanol, asam laktat, dan hidrogen. Akan tetapi beberapa komponen lain dapat juga dihasilkan dari fermentasi seperti asam butirat dan aseton. Ragi dikenal sebagai bahan yang umum digunakan dalam fermentasi untuk menghasilkan etanol dalam bir, anggur dan minuman beralkohol lainnya. Respirasi anaerobik dalam otot mamalia selama kerja yang keras (yang tidak memiliki akseptor elektron eksternal), dapat dikategorikan sebagai bentuk fermentasi yang mengasilkan asam laktat sebagai produk sampingannya. Akumulasi asam laktat inilah yang berperan dalam menyebabkan rasa kelelahan pada otot.
Reaksi dalam fermentasi berbeda-beda tergantung pada jenis gula yang digunakan dan produk yang dihasilkan. Secara singkat, glukosa (C6H12O6) yang merupakan gula paling sederhana , melalui fermentasi akan menghasilkan etanol (2C2H5OH). Reaksi fermentasi ini dilakukan oleh ragi, dan digunakan pada produksi makanan.
Persamaan Reaksi Kimia
C6H12O6 → 2C2H5OH + 2CO2 + 2 ATP (Energi yang dilepaskan:118 kJ per mol)
Dijabarkan sebagai
Gula (glukosa, fruktosa, atau sukrosa) → Alkohol (etanol) + Karbon dioksida + Energi (ATP)
Jalur biokimia yang terjadi, sebenarnya bervariasi tergantung jenis gula yang terlibat, tetapi umumnya melibatkan jalur glikolisis, yang merupakan bagian dari tahap awal respirasi aerobik pada sebagian besar organisme. Jalur terakhir akan bervariasi tergantung produk akhir yang dihasilkan.
Contoh respirasi anaerob adalah fermentasi asam laktat dan fermentasi alcohol.
  1. Fermentasi asam laktat
Reaksi: asam laktat
C6H12O6 -->2CH3CH(OH)COOH + 2ATP
  1.  Fermentasi alkohol
Reaksi:
C6H12O6 --> 2C2H5OH + 2CO2 + 2 ATP
alkohol

Respirasi anaerob sangat merugikan sel karena dihasilkan senyawa yang dapat menjadi racun bagi sel, contohnya alcohol. Selain itu dalam jumlah mol zat yang sama akan dihasilkan energy lebih rendah.
Sumber energi dalam kondisi anaerobik
Fermentasi diperkirakan menjadi cara untuk menghasilkan energi pada organisme purba sebelum oksigen berada pada konsentrasi tinggi di atmosfer seperti saat ini, sehingga fermentasi merupakan bentuk purba dari produksi energi sel.
Produk fermentasi mengandung energi kimia yang tidak teroksidasi penuh tetapi tidak dapat mengalami metabolisme lebih jauh tanpa oksigen atau akseptor elektron lainnya (yang lebih highly-oxidized) sehingga cenderung dianggap produk sampah (buangan). Konsekwensinya adalah bahwa produksi ATP dari fermentasi menjadi kurang effisien dibandingkan oxidative phosphorylation, di mana pirufat teroksidasi penuh menjadi karbon dioksida. Fermentasi menghasilkan dua molekul ATP per molekul glukosa bila dibandingkan dengan 36 ATP yang dihasilkan respirasi aerobik.
"Glikolisis aerobik" adalah metode yang dilakukan oleh sel otot untuk memproduksi energi intensitas rendah selama periode di mana oksigen berlimpah. Pada keadaan rendah oksigen, makhluk bertulang belakang (vertebrata) menggunakan "glikolisis anaerobik" yang lebih cepat tetapi kurang effisisen untuk menghasilkan ATP. Kecepatan menghasilkan ATP-nya 100 kali lebih cepat daripada oxidative phosphorylation. Walaupun fermentasi sangat membantu dalam waktu pendek dan intensitas tinggi untuk bekerja, ia tidak dapat bertahan dalam jangka waktu lama pada organisme aerobik yang kompleks. Sebagai contoh, pada manusia, fermentasi asam laktat hanya mampu menyediakan energi selama 30 detik hingga 2 menit.
Tahap akhir dari fermentasi adalah konversi piruvat ke produk fermentasi akhir. Tahap ini tidak menghasilkan energi tetapi sangat penting bagi sel anaerobik karena tahap ini meregenerasi nicotinamide adenine dinucleotide (NAD+), yang diperlukan untuk glikolisis. Ia diperlukan untuk fungsi sel normal karena glikolisis merupakan satu-satunya sumber ATP dalam kondisi anaerobik.
Fermentasi makanan
Pembuatan tempe dan tape (baik tape ketan maupun tape singkong atau peuyeum) adalah proses fermentasi yang sangat dikenal di Indonesia. Proses fermentasi menghasilkan senyawa-senyawa yang sangat berguna, mulai dari makanan sampai obat-obatan. Proses fermentasi pada makanan yang sering dilakukan adalah proses pembuatan tape, tempe, yoghurt, dan tahu.
. Fermentasi Asam Laktat
Fermentasi asam laktat yaitu fermentasi dimana hasil akhirnya adalah asam laktat. Peristiwa ini dapat terjadi di otot dalam kondisi anaerob.

Reaksinya: C6H12O6 ————> 2 C2H5OCOOH + Energi
enzim

Prosesnya :

1. Glukosa ————> asam piruvat (proses Glikolisis).
enzim
C6H12O6 ————> 2 C2H3OCOOH + Energi

2. Dehidrogenasi asam piravat akan terbentuk asam laktat.
2 C2H3OCOOH + 2 NADH2 ————> 2 C2H5OCOOH + 2 NAD
piruvat
dehidrogenasa

Energi yang terbentak dari glikolisis hingga terbentuk asam laktat :
8 ATP — 2 NADH2 = 8 - 2(3 ATP) = 2 ATP.
B.     Fermentasi Alkohol
Pada beberapa mikroba peristiwa pembebasan energi terlaksana karena asam piruvat diubah menjadi asam asetat + CO2 selanjutaya asam asetat diabah menjadi alkohol.
Dalam fermentasi alkohol, satu molekul glukosa hanya dapat menghasilkan 2 molekul ATP, bandingkan dengan respirasi aerob, satu molekul glukosa mampu menghasilkan 38 molekul ATP.
Reaksinya :

1. Gula (C6H12O6) ————> asam piruvat (glikolisis)
2. Dekarbeksilasi asam piruvat.
Asampiruvat ————————————————————> asetaldehid + CO2.
piruvat dekarboksilase (CH3CHO)
3. Asetaldehid oleh alkohol dihidrogenase diubah menjadi alkohol
(etanol).
2 CH3CHO + 2 NADH2 —————————————————> 2 C2HsOH + 2 NAD.
alkohol dehidrogenase
enzim
Ringkasan reaksi :
C6H12O6 —————> 2 C2H5OH + 2 CO2 + 2 NADH2 + Energi


C. Fermentasi Asam Cuka
Fermentasi asam cuka merupakan suatu contoh fermentasi yang berlangsung dalam keadaan aerob. Fermentasi ini dilakukan oleh bakteri asam cuka (Acetobacter aceti) dengan substrat etanol.
Energi yang dihasilkan 5 kali lebih besar dari energi yang dihasilkan oleh fermentasi alkohol secara anaerob.
Reaksi:
aerob
C6H12O6 —————> 2 C2H5OH ———————————————> 2 CH3COOH + H2O + 116 kal
(glukosa) bakteri asam cuka asam cuka

1 komentar:

  1. Roulette Wheel Bet365 Casino Site and Tips - Lucky Club
    Play roulette, roulette, poker and more at the best Roulette Wheel Casino site. Get the latest odds, luckyclub.live tips, picks and more.

    BalasHapus